IN-SCHOOL WORKSHOPS

SCIENCE, TECHNOLOGY, ENGINEERING & MATH WORKSHOPS FOR GRADES 3 TO 8

UNIVERSITY OF TORONTO Engineering
IN-SCHOOL WORKSHOPS
SCIENCE, TECHNOLOGY, ENGINEERING & MATH WORKSHOPS FOR GRADES 3 TO 8

We link our workshops to Ontario curriculum expectations and are pleased to offer the following workshops to grade 3 to 8 classes. For pricing and booking instructions, please see the back cover. Each workshop can accommodate a maximum of 30 students and is offered at your school. Workshops for 2018 are offered between May 9 and June 15, 2018.

Our workshops are designed to be scalable for all grades from 3-8 and can be customized for different grades. Please contact us if you have a specific request.

<table>
<thead>
<tr>
<th>WORKSHOP TITLE</th>
<th>ACTIVITY DESCRIPTION</th>
<th>GRADE</th>
<th>TOPICS</th>
<th>ONTARIO CURRICULUM CONNECTION</th>
<th>UNIVERSITY DISCIPLINE CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic Hijinks</td>
<td>Students will design and construct a hydraulic crane as a working mechanical system.</td>
<td>Gr.5</td>
<td>Technological problem-solving skills to design, build and test a system</td>
<td>Understanding Structures and Mechanisms: Forces</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>(SM-1)</td>
<td></td>
<td></td>
<td>that performs a specific function; the advantages and disadvantages of</td>
<td>Acting on Structures and Mechanisms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>different types of mechanical systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gr.7</td>
<td>Safety procedures for using tools and handling materials; physical</td>
<td>Understanding Structures and Mechanisms: Form and</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>models that investigate the effects of various forces on structures</td>
<td>Function</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gr.8</td>
<td>Technological problem-solving skills to investigate a system that</td>
<td>Understanding Structures and Mechanisms: Systems</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>performs a function; relationship between work, force, and distance;</td>
<td>in Action</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mechanical advantage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colossal Superstructures</td>
<td>Students will design, build and test structures that can withstand applied loads.</td>
<td>Gr.3</td>
<td>Technological problem-solving skills and knowledge to design and build</td>
<td>Understanding Structures and Mechanisms: Strong</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>(SM-2)</td>
<td></td>
<td></td>
<td>a strong and stable structure that serves a purpose</td>
<td>and Stable Structures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gr.5</td>
<td>Factors that impact the strength of a structure and its ability to</td>
<td>Understanding Structures and Mechanisms: Forces</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>support and resist loads; materials and construction techniques that</td>
<td>Acting on Structures and Mechanisms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>add strength and stability to structures; vocabulary, including</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>compression, tension, strength and stability; problem-solving skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in designing, building and testing a strong structure that serves a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>purpose</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gr.7</td>
<td>Factors that determine the ability of a structure to support a load;</td>
<td>Understanding Structures and Mechanisms: Form and</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>problem-solving skills that determine the most efficient way for a</td>
<td>Function</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>structure to support a given load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indy 500</td>
<td>Students will design, build and test a model racecar.</td>
<td>Gr.4</td>
<td>Investigations into rotary motion in one system or its components and</td>
<td>Understanding Structures and Mechanisms: Pulleys</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>(SM-3)</td>
<td></td>
<td></td>
<td>how energy is transferred to another system or component in the same</td>
<td>and Gears</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gr.5</td>
<td>Technological problem-solving skills to design, build and test a</td>
<td>Understanding Structures and Mechanisms: Forces</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>structure; external forces acting on a structure; design, build and</td>
<td>Acting on Structures and Mechanisms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>test integrating principles of aerodynamics; evolution and change in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gr.6</td>
<td>Applications of the properties of air; different forces (thrust,</td>
<td>Understanding Structures and Mechanisms: Flight</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>drag, lift, weight); design, build and test integrating principles of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>aerodynamics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Image of workshop participants](image-url)
<table>
<thead>
<tr>
<th>WORKSHOP TITLE</th>
<th>ACTIVITY DESCRIPTION</th>
<th>GRADE</th>
<th>TOPICS</th>
<th>ONTARIO CURRICULUM CONNECTION</th>
<th>UNIVERSITY DISCIPLINE CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creature Creation (LS-1)</td>
<td>Students will design and construct a unique creature using principles of adaptation for survival in specific environments and ecosystems.</td>
<td>Gr. 3</td>
<td>Relationships in which plants and animals depend on each other (e.g., plants provide food for energy; animals help disperse pollen and seeds)</td>
<td>Understanding Life Systems: Understanding Basic Concepts</td>
<td>Biology / Bioengineering</td>
</tr>
<tr>
<td>Gene Machine (LS-2)</td>
<td>Students will extract DNA from plant cells through chemical processes and explore the structure and importance of cells.</td>
<td>Gr. 5</td>
<td>Building models to demonstrate how organs or components of body systems in organisms work and interact with other components</td>
<td>Understanding Life Systems: Developing Investigation and Communication Skills</td>
<td>Biology / Bioengineering</td>
</tr>
<tr>
<td>Forensic Fun (LS-3)</td>
<td>Students will use knowledge of chemical interactions to solve a mystery.</td>
<td>Gr. 5</td>
<td>Assess the effects of social and environmental factors on human health, and propose ways in which individuals can reduce the harmful effects of these factors</td>
<td>Understanding Life Systems: Relating Science and Technology to Society and the Environment</td>
<td>Chemistry / Chemical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gr. 6</td>
<td>Following established safety procedures for outdoor activities and field work</td>
<td>Understanding Life Systems: Developing Investigation and Communication Skills</td>
<td>Chemistry / Chemical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gr. 7</td>
<td>Human activities and technologies that alter balances and interactions in the environment</td>
<td>Understanding Life Systems: Interactions in the Environment</td>
<td>Chemistry / Chemical Engineering</td>
</tr>
</tbody>
</table>
UNDERSTANDING MATTER & ENERGY

<table>
<thead>
<tr>
<th>WORKSHOP TITLE</th>
<th>ACTIVITY DESCRIPTION</th>
<th>GRADE</th>
<th>TOPICS</th>
<th>ONTARIO CURRICULUM CONNECTION</th>
<th>UNIVERSITY DISCIPLINE CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Systems (ME-1)</td>
<td>Students will create working alarm systems using circuit components.</td>
<td>Gr. 3</td>
<td>Safety procedures during science and technology investigations; effects of increasing or decreasing amounts of force or energy applied to an object</td>
<td>Understanding Matter and Energy: Developing Investigation and Communication Skills</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Development of technological problem-solving skills to design, build and test a device that makes use of the properties of light or sound</td>
<td>Understanding Matter and Energy: Light and Sound</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Series and parallel circuits; circuit components; design, build and test an alarm system that transforms electrical energy into another form of energy to perform function; conductors and insulators of electricity</td>
<td>Understanding Matter and Energy: Electricity and Electrical Devices</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>Circuit Mazes (ME-2)</td>
<td>Students will explore the concept of closed circuits as they design and create a circuit maze system.</td>
<td>Gr. 3</td>
<td>Safety procedures during science and technology investigations; effects of increasing or decreasing amount of force or energy applied to an object</td>
<td>Understanding Matter and Energy: Developing Investigation and Communication Skills</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technological problem-solving skills to design, build, and test a device that makes use of the properties of light or sound</td>
<td>Understanding Matter and Energy: Light and Sound</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Designing and building series and parallel circuits, drawing labelled diagrams identifying the components used in each, and describing the role of each component in a circuit</td>
<td>Understanding Matter and Energy: Electricity and Electrical Devices</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>Slime & Polymers (ME-3)</td>
<td>Students will formulate and synthesize polymer creations.</td>
<td>Gr. 3</td>
<td>The effects of the action of forces in nature on the natural and built environment, and identification of ways in which human activities can reduce or enhance this impact</td>
<td>Understanding Matter and Energy: Relating Science and Technology to Society and the Environment</td>
<td>Chemistry / Chemical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Physical properties of materials and their applications; properties of solids, liquids and gases; physical and chemical changes</td>
<td>Understanding Matter and Energy: Properties and Changes in Matter</td>
<td>Chemistry / Chemical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Properties of pure substances and mixtures; particle theory of matter; experimentation skills to investigate the properties of mixtures and solutions; concentration of solutions in qualitative and quantitative terms</td>
<td>Understanding Matter and Energy: Pure Substances and Mixtures</td>
<td>Chemistry / Chemical Engineering</td>
</tr>
</tbody>
</table>

UNDERSTANDING SPACE & EARTH SYSTEMS

<table>
<thead>
<tr>
<th>WORKSHOP TITLE</th>
<th>ACTIVITY DESCRIPTION</th>
<th>GRADE</th>
<th>TOPICS</th>
<th>ONTARIO CURRICULUM CONNECTION</th>
<th>UNIVERSITY DISCIPLINE CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme Roller-Coasters (SE-1)</td>
<td>Students will design, build and test model roller-coasters, while applying laws of physics and principles of design.</td>
<td>Gr. 4</td>
<td>Social and environmental costs and benefits of using objects in the built environment that are made from rocks and minerals</td>
<td>Understanding Earth and Space Systems: Rocks and Minerals</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technological problem-solving skills to design, build and test a device that transforms one type of energy into another; Law of Conservation of Energy</td>
<td>Understanding Earth and Space Systems: Conservation of Energy and Resources</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Environmental and economic impacts of using conventional and alternative forms of energy</td>
<td>Understanding Matter and Energy: Relating Science and Technology to Society and the Environment</td>
<td>Mechanical Engineering</td>
</tr>
</tbody>
</table>
UNDERSTANDING SPACE & EARTH SYSTEMS (CONT.)

<table>
<thead>
<tr>
<th>WORKSHOP TITLE</th>
<th>ACTIVITY DESCRIPTION</th>
<th>GRADE</th>
<th>TOPICS</th>
<th>ONTARIO CURRICULUM CONNECTION</th>
<th>UNIVERSITY DISCIPLINE CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocket Science!</td>
<td>Students will build and test rockets to investigate the principles of aerodynamics.</td>
<td>Gr. 4</td>
<td>Social and environmental costs and benefits of using objects in the built environment that are made from rocks and minerals</td>
<td>Understanding Earth and Space Systems: Rocks and Minerals</td>
<td>Aerospace Engineering</td>
</tr>
<tr>
<td>Gr. 6</td>
<td>Components of the solar system; technological tools and devices needed for space exploration; physics of flight and forces acting on an object in flight</td>
<td>Gr. 6</td>
<td>Social and environmental costs and benefits of using objects in the built environment that are made from rocks and minerals</td>
<td>Understanding Earth and Space Systems: Space</td>
<td>Aerospace Engineering</td>
</tr>
<tr>
<td>Gr. 7</td>
<td>Social and environmental benefits of technologies that reduce heat loss or transfer; environmental and economic impacts of using conventional and alternative forms of energy</td>
<td>Gr. 7</td>
<td>Social and environmental costs and benefits of using objects in the built environment that are made from rocks and minerals</td>
<td>Understanding Earth and Space Systems: Heat in the Environment</td>
<td>Aerospace Engineering</td>
</tr>
<tr>
<td>Crazy Catapults (SE-3)</td>
<td>Students will explore how force and energy affect motion by designing and building catapult mechanisms.</td>
<td>Gr. 4</td>
<td>Social and environmental costs and benefits of using objects in the built environment that are made from rocks and minerals</td>
<td>Understanding Earth and Space Systems: Rocks and Minerals</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Gr. 5</td>
<td>Technological problem-solving skills to design, build and test a device that transforms one type of energy into another; Law of Conservation of Energy</td>
<td>Gr. 5</td>
<td>Social and environmental costs and benefits of using objects in the built environment that are made from rocks and minerals</td>
<td>Understanding Earth and Space Systems: Conservation of Energy and Resources</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Environmental and economic impacts of using conventional and alternative forms of energy</td>
<td>Gr. 7</td>
<td>Social and environmental costs and benefits of using objects in the built environment that are made from rocks and minerals</td>
<td>Understanding Earth and Space Systems: Relating Science and Technology to Society and the Environment</td>
<td>Mechanical Engineering</td>
<td>Mechanical Engineering</td>
</tr>
</tbody>
</table>

FULL DAY WORKSHOPS

<table>
<thead>
<tr>
<th>WORKSHOP TITLE</th>
<th>ACTIVITY DESCRIPTION</th>
<th>GRADE</th>
<th>TOPICS</th>
<th>ONTARIO CURRICULUM CONNECTION</th>
<th>UNIVERSITY DISCIPLINE CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.I. Bots (FD-1)</td>
<td>Students will learn about robotics and fundamental coding and problem solving skills.</td>
<td>Gr. 4</td>
<td>Technological problem-solving skills to design, build, and test a device that makes use of properties of light or sound</td>
<td>Understanding Matter and Energy: Light and Sound</td>
<td>Robotics / Computer Science</td>
</tr>
<tr>
<td>Gr. 6</td>
<td>Technological problem-solving skills to design, build and test a device that transforms electrical energy into another form of energy in order to perform a function</td>
<td>Gr. 6</td>
<td>Understanding Matter and Energy: Electricity and Electrical Devices</td>
<td>Understanding Matter and Energy: Electricity and Electrical Devices</td>
<td>Robotics / Computer Science</td>
</tr>
<tr>
<td>Evaluation of the importance for individuals, society, the economy, and the environment of factors that should be considered in designing and building structures and devices to meet specific needs</td>
<td>Gr. 7</td>
<td>Understanding Structures and Mechanisms: Form and Function</td>
<td>Understanding Structures and Mechanisms: Form and Function</td>
<td>Understanding Structures and Mechanisms: Form and Function</td>
<td>Robotics / Computer Science</td>
</tr>
<tr>
<td>Sustainable Urban Planning (FD-2)</td>
<td>Students will work to plan an eco-city of the future with consideration of environmental impact and energy conservation.</td>
<td>Gr. 4</td>
<td>Positive and negative impacts of human interactions with natural habitats and communities, taking different perspectives into account, and evaluations of ways of minimizing the negative impacts</td>
<td>Understanding Life Systems: Habitats and Communities</td>
<td>Civil Engineering / Industrial Engineering</td>
</tr>
<tr>
<td>Scientific inquiry/research skills to investigate issues related to energy and resource conservation: effects of various technologies on energy consumption</td>
<td>Gr. 5</td>
<td>Understanding Earth and Space Systems: Conservation of Energy and Resources</td>
<td>Understanding Earth and Space Systems: Conservation of Energy and Resources</td>
<td>Understanding Earth and Space Systems: Conservation of Energy and Resources</td>
<td>Civil Engineering / Industrial Engineering</td>
</tr>
</tbody>
</table>
LEADERSHIP WORKSHOPS
SCIENCE, TECHNOLOGY, ENGINEERING
& MATH WORKSHOPS FOR GRADES 3 TO 8

<table>
<thead>
<tr>
<th>WORKSHOP TITLE</th>
<th>ACTIVITY DESCRIPTION</th>
<th>GRADE</th>
<th>TOPICS</th>
<th>ONTARIO CURRICULUM CONNECTION</th>
<th>STEM CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme Roller Coaster Design Challenge</td>
<td>Students will work in teams to design, build, and test model roller coasters in a rapid prototyping session, while applying laws of physics, principles of design, budgetary considerations and client specifications.</td>
<td>Gr. 5</td>
<td>Technological problem-solving skills to design, build and test a device that transforms one type of energy into another; Law of Conservation of Energy; Designing with varying client specifications in mind</td>
<td>Understanding Earth and Space Systems: Conservation of Energy and Resources</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gr. 8</td>
<td>Technological problem-solving skills to design, build, and test a device according to client specifications; examination of the effects of various components of the system and how they affect its function and output</td>
<td>Understanding Structures and Mechanisms: Systems in Action</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>No Bones About It</td>
<td>Students will examine how components of the human skeleton come together to allow us to function in the ways we do. They will then look to comparative anatomy to learn more about living organisms and their environment as inspiration for innovation.</td>
<td>Gr. 5</td>
<td>Investigating how the skeletal system works with other systems in the body to help us function the way we do; using bio-inspired design in engineering to help improve lives for those with injury or disease; exploring comparable systems in other living things</td>
<td>Understanding Life Systems: Human Organ Systems</td>
<td>Biomedical Engineering, Materials Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gr. 7</td>
<td>Investigating the factors and structures that allow the body to do the things it does; Biomimicry and bio-inspired design in engineering to help improve lives for those with injury or disease; exploring comparable skeletal structures of other living things</td>
<td>Understanding Structures and Mechanisms: Form and Function</td>
<td>Computer/Environmental Engineering</td>
</tr>
<tr>
<td>Emergency Shelters</td>
<td>Students will create shelters for an emergency situation while testing their communication, teamwork and collaboration skills. Structures will be tested for stability and efficiency of their design in context. Students will work together to resolve challenges and explore priorities in a time of crisis.</td>
<td>Gr. 3</td>
<td>Factors that impact the strength and stability of a structure; problem-solving skills in designing, building and testing a strong and stable structure that serves a purpose; forming a collaborative and mutually beneficial set of community standards</td>
<td>Understanding Structures and Mechanisms: Strong and Stable Structures</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gr. 5</td>
<td>Internal forces acting on a structure (compression, tension); external forces (wind, movement); building a stable structure to support a load; how structures are built to withstand forces; the role of citizens in a community; taking a leadership role in a time of crisis; working as a team; effective communication and the various forms it can take</td>
<td>Understanding Structures and Mechanisms: Forces Acting on Structures and Mechanisms; Social Studies: The Role of Government and Responsible Citizenship</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gr. 7</td>
<td>Investigating the relationship between the design and function of various structures; factors that need to be considered in structure design; effective communication and teamwork in a time of crisis</td>
<td>Understanding Structures and Mechanisms: Form and Function</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Toy Design</td>
<td>Students will look at the engineering design and innovation process on a smaller scale, examining all of the detailed decisions that must be made along the way and how they impact a final product.</td>
<td>Gr. 5</td>
<td>Examining forces acting on a mechanism to inform the design of an improved mechanism; rapid prototyping and the engineering design cycle; importance of giving and receiving constructive feedback as a leader in science and engineering; the engineering design process</td>
<td>Understanding Structures and Mechanisms: Forces Acting on Structures and Mechanisms</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gr. 7</td>
<td>Investigating the relationship between the design and function of a mechanism and the forces that act upon it; rapid prototyping and the engineering design cycle; importance of giving and receiving constructive feedback</td>
<td>Understanding Structures and Mechanisms: Form and Function</td>
<td>Industrial Engineering (Human Factors)</td>
</tr>
</tbody>
</table>
CONTACT INFORMATION

MAIN CONTACT:

<table>
<thead>
<tr>
<th>FIRST NAME</th>
<th>LAST NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHONE NUMBER</th>
<th>EMAIL ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCHOOL:

<table>
<thead>
<tr>
<th>SCHOOL NAME</th>
<th>BOARD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADDRESS:

<table>
<thead>
<tr>
<th>STREET NO. & NAME</th>
<th>CITY</th>
<th>POSTAL CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEAREST INTERSECTION TO SCHOOL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

PHONE:

<table>
<thead>
<tr>
<th>PHONE</th>
<th>EXTENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WE OFFER IN-SCHOOL WORKSHOPS ON THE FOLLOWING DATES: MONDAY TO FRIDAY FROM MAY 9 TO JUNE 15, 2018.

To schedule workshops outside the May 9 to June 15 window, please email your preferred dates to workshop@ecf.utoronto.ca to check availability before submitting this form.

Which dates would you prefer us to visit your school?

<table>
<thead>
<tr>
<th>REQUESTED DATE</th>
<th>ALTERNATIVE DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To help us schedule your workshops, please provide your school schedule:

<table>
<thead>
<tr>
<th>START</th>
<th>LUNCH</th>
<th>END</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WORKSHOP REQUESTS

Please note: Each workshop can accommodate a maximum of 30 students and is offered at your school.

Please email us at workshop@ecf.utoronto.ca for more information.

<table>
<thead>
<tr>
<th>TEACHER</th>
<th>GRADE</th>
<th># OF STUDENTS</th>
<th>WORKSHOP TITLE</th>
<th>START TIME</th>
<th>END TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you are not booking online, please email or mail this form to us. After we receive your form, we will send you a confirmation and invoice to the email address provided. Workshops are not officially booked until you receive confirmation. We look forward to hearing from you!
HOW TO BOOK AN IN-SCHOOL WORKSHOP

1. **Select your workshops.** We offer a wide range of workshop topics that are grade-specific, fun and kid-friendly. Each workshop is 2.5 hours in length. We are pleased to offer special pricing on workshop packages for schools. If other teachers in your school are interested in booking workshops, we encourage you to book together to save money. Please note, each workshop can accommodate a maximum of 30 students.

2. **Complete the booking form.** We schedule workshops on a first-come-first-served basis. Book early for preferred dates!

3. **Send your completed form to our office by mail:**

 BY EMAIL: workshop@ecf.utoronto.ca
 DOWNLOAD THE FORM: www.uoft.me/isw

The University of Toronto’s Faculty of Applied Science & Engineering is committed to inspiring young minds in the areas of science, technology, engineering and math (STEM). We achieve this through a wide range of year-round, hands-on programs for children of all ages. Last year, we reached more than 5,000 pre-university youth. Some of our programs include:

- **JR. DEEP (SUMMER, GR. 3–8)**
- **GIRLS’ JR. DEEP (SUMMER, GR. 3–8)**
- **JR. DEEP SATURDAYS (FALL AND WINTER, GR. 3–8)**
- **GIRLS’ JR. DEEP SATURDAYS (FALL AND WINTER, GR. 3–8)**
- **JR. DEEP AT MARCH BREAK (MARCH, GR. 3–8)**
- **DEEP SUMMER ACADEMY (SUMMER, GR. 9–12)**
- **DEEP LEADERSHIP CAMP (SUMMER, GR. 10–12)**

After you receive your confirmation, leave the rest to us!

Our instructors will bring the necessary materials for all activities.

WORKSHOP PACKAGES & PRICING

Booking In-School Workshops with other teachers in your school is the most cost-effective way to bring these enriching workshops to your classroom. Packages can be split among different grade levels and classrooms (maximum 30 students per workshop) within your school, but all workshops must occur on the same day.

- **SCHOOL PACKAGE I: FULL-DAY** $1,560
 12 workshops @ 2.5 hrs each

- **SCHOOL PACKAGE II: HALF-DAY** $875
 6 workshops @ 2.5 hrs each

- **INDIVIDUAL WORKSHOPS**
 1 workshop @ 2.5 hrs each $170
 1 workshop @ 5 hrs (full day) $310

Priority will be given to schools with multiple bookings.

Actua provides training, resources and support to its national network of members located at universities and colleges across Canada in the delivery of science, technology, engineering and mathematics (STEM) education outreach programming. Each year, these members engage over 225,000 youth in 500 communities nationwide. Please visit Actua at www.actua.ca.

2018 ACTUA ONTARIO FUNDER
Ontario Trillium Foundation

2018 ACTUA NATIONAL FUNDERS
Google
Suncor Energy Foundation
GE Canada
Natural Sciences and Engineering Research Council of Canada